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Biological tests have shown that a significant part of the mutagenicity of organic extracts of
collected airborne particulate matier is not due to polycyclic aromatic hydrocarbons (PAH). It is
possible that part of these unknown compounds are transformation products of PAH. This survey
focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen
oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemicaily
induced reactions of PAH are also included. The reactivity of particle-associated PAH is
discussed in relation to the chemical composition and the physical properties of the carrier.

Recommendations for future work are given.

Introduction

As early as the 1950s it was observed that a
gignificant part of the carcinogenic compounds pres-
ent in organic extracts of collected airborne particu-
late matier did not belong to the class of polyeyelic
aromatic hydrocarbons (PAH) (1). Several recent
investigations seem to show that only a minor part
of the mutagenic activity of organic extracts of
environmental samples in Salmonella tests can be
ascribed to the presence of PAH (2-10). Further-
more, laboratory experiments have shown that
some PAH may react with copollutants to form
compounds having mutagenic properties different
from those of the parent PAHs (17,12). These
transformation products therefore may be of con-
siderable environmental interest.

In this survey we will discuss the possible
transformation products formed by reaction of
PAH with NQ,, S0Q,, O, and free radicalz. The
possible photochemically induced reactions of PAH
are also treated.

The occurrence in the atmosphere of PAH and
mutagenic particle-associated poiyeyclic organic mat-

*Chemistry Department, Risg National Laboratory, DK-4000
Roskilde, Denmark.

TCentral Institute for Industrial Research, Forskningsveien
1, P. 0. Box 350, Blindern, Oslo 3, Norway.

ter (POM) shows seasonal variations (4,7,8,13-16).
The potential transformation reactions may also
show such variations. The main reactions of PAH
and other POM in winter in the northern countries
is presumed to be their reactions with nitrogen
oxides, sulfur oxides and their corresponding acids.
Photolytic reactions (#7-22) and reactions with
photochemieal air pollutants, ozone, peroxyacetyl
nitrate, hydroxyl and hydroperoxyl radicals (11,
12,17,22-26) may be important in summer in the
northern countries.

Formation and Occurrence of
Nitroarenes

Presence of Nitroarenes
in Environmental Samples

The presence of PAH in exhaust gases, combustion
emissions, and the atmosphere has been thoroughly
investigated (27-30). However, several of the ana-
Iytical techniques used for the fractionation and
isolation of PAH in complex samples do not sepa-
rate the PAH from the monoenitro-PAH. Mono-
nitro-PAH have been reported to be present in the
PAH fraction in only a few cases, indicating that
mononitro-PAH generally is not present in amounts
comparable with those of the most common carci-
nogenic PAH in environmental samples.
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So far mononitro- and/or dinitro-PAH have been
demonstrated to be compounds in samples from
diesel exhaust (10,31), of airborne particulate mat-
ter (31,32) and of carbon black ($3-35). Biological
tests have confirmed that mutagenic complex nitro-
arenes are present in substantial amounts in pol-
luted air in winter (9,36,37).

It seems plausible that the chemical structure of
these compounds are more complicated than that of
the simple nitro-PAH. Furthermore, the results
attained by biological tests suggest that formation
of mutagenic complex nitroarenes is possible in an
atmosphere having a reducing character, and at low
ambient temperatures. So far, most of the discus-
sion concerning the formation of nitro-PAH in the
atmosphere and during the collection of airborne
particulate matter have been focused on an atmo-
sphere containing high levels of photochemical oxi-
dants, and at high ambient temperatures (38).

Most of the particle-adsorbed PAH is associated
with the smaller-size particles (39-41). This has also
been observed for the so-called directly acting muta-
gens (42). 1t appears reasonable, therefore, to assume
that particle-bonded mutagenic complex nitroarenes
will be associated mainly with respirable particles.

Formation of Nitroarenes by Radical
Reactions

A substantial part of the low melecular weight
PAH are present in vapor phase in the atmosphere
(15,43-46). Subsequent reactions of vapor-phase PAH
and other arenes with hydroxyl radicals and nitro-
gen dioxide may perhaps be a source for their
transformation to nitro-derivatives under conditions
of photochemical air pollution during the day. For
toluene, it has been estimated (47), by means of the
rate constants determined for the subsequent steps
(48,49), that less than 5% of the toluene reacting
with hydroxyl radicals will be transformed to nitro-
toluene, even under circumstances of heavy pollu-
tion of nitrogen dioxide. It may, therefore, be pos-
sible that subsequent reactions of vapor phase arenes
with hydroxyl radicals and nitrogen dioxide are not
an important source for nitro derivatives.

The dominant reaction of nitrogen trioxide with
phenols, and probably also with other hydroxyarenes,
is hydrogen abstraetion from the oxygen atom lead-
ing to nitrie acid and phenoxy radicals (50). Concen-
trations of nitrogen trioxide exceeding 100 ppt have
been observed in situations of low humidity (less
than 60% RH), and with photochemical air pollution
persisting during the night (38,51 and U. Platt,
personal communications, 1981). At a concentration
of 10 ppt nitrogen trioxide, the half-life of phenol
will be about 20 min. For the cresols the half-lives

will be in the range 4-7 min (50). The main reactions
of the phenoxyl radicals appear to be reactions with
oxygen leading to quinones (11, 52, 53) and reac-
tions with nitrogen dioxide to nitrohydroxy deriva-
tives (49). In analogy to the latter reaction, nitro-
gen monoxide is able to transform the phenoxyl
radical of 9-hydroxyanthracene to anthraquinone
monooxime (tautomer to 9-hydroxy-10-nitrosoan-
thracene) (52). At ambient temperatures and a
concentration of nitrogen dioxide of 25 ppb, the
half-life for the transformation of the phenoxy radi-
cal of phenol to nitrophenols is about 0.07 sec (49).
The reaction with nitrogen trioxide may therefore
be a possible source for the formation of nitrohydroxy
derivatives of the low molecular weight polyeyelic
organic matter in summer in situations with photo-
chemical air pollution persisting during the night,
even though the relative humidity may be higher
than 60% most of the time.

Depending on the operating parameters of the
combustion, the ratio of nitrogen dioxide to oxygen
may be much higher in stack and exhaust gases
than in the atmosphere. If so, this implies a higher
probability for reactions of vapor-phase polycyclic
organic matter with reactive radicals leading to
nitro derivatives instead of oxidation products. High
concentrations of hydroxyl radicals have been ob-
served in post-combustion burned gases (54,55),
but in cooled exhaust and stack gases the concen-
trations of hydroxyl radicals are probably low (56).
Above 100-200°C the dominant reaction of benzene
with hydroxy] radicals appears to be hydrogen ab-
straction from the aromatic system (57,58).

However, under the conditions pertaining to
exhaust gases, the reaction pathways are poorly
understood at present. Despite combination reac-
tions of aryl radicals and nitrogen dioxide appear to
be slow in solution experiments (59), hydrogen
abstraction from PAH transforming these to aryl
radicals and subsequently combination of aryl radi-
cals with nitrogen dioxide could perhaps be a possi-
ble pathway for the formation of mononitro-PAH in
stack and exhaust gases, At present, it is question-
able whether mononitro-PAH are truly components
of diesel exhaust gases or are formed as artifacts
during the collection procedure (60).

Formation of Nitroarenes by
Electrophilic Reactions

The reactions of particle-associated polycyclie
organic matter (POM) may be a result of gas—solid,
liquid-solid and combined gas-liquid and liquid-solid
interactions. As soot particles (61) and probably
also other types of airborne particulates are able to
adsorb relatively large amounts of water and as the
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humidity appear to affect the adsorption of nitrogen
dioxide (62), it is presumed in this survey that the
most plausible nitration reactions of particle-asso-
ciated POM in the atmosphere involve liquid-solid
reaction step(s). If the presumption is correct, it is
clear that qualitative aspects of studies of nitration
reactions of PAH and other POM in polar solvents
is of relevance for the evaluation of the atmospheric
chemistry of particle-associated POM.

The radical cations of some PAHs, e.g., benzo(a)-
pyrene, are very stable (63), and the facile prepara-
tion of radical cations of reactive PAH having low
oxidation and ionization potentials (64-67) have been
utilized for preparing 1-nitropyrene and 3-nitro-
perylene (68). So far, there is spectroscopic evi-
dence that radical cations are involved in the nitration
reactions of some anilines (69,70). Whether or not
nitrations of PAH involve radical cations is at pres-
ent disputed (71-73). As discussed elsewhere (47), if
reactive PAH are transformed to nitro-PAH via
radical cations, it may be possible that one will
observe high yields of nitro-PAH in simple model
systern and/or in systems using high concentrations
of nitrous acid, nitrogen dioxide, and nitric acid
{11,24,74-77). In the real world, however, an air-
borne particle of complex composition and in an
atmosphere with relatively low concentrations of
nitrogen dioxide, nitrous acid and nitric acid, the
radical cations of the reactive PAH may be trans-
formed to other species than nitro-PAH, Consider-
ing this, the importance of reactions of particle-
associated PAH with nitrogen dioxide, nitrous acid
and nitric acid in the atmosphere and during sam-
pling of airborne particulate matter is a question of
the transformation rates of the different PAH, and
the identity of the transformation products.

Based on measurements of the decomposition
rates of PAH in weekly acidic solutions containing
relatively small concentrations of nitrate, nitrous
acid and minute amounts of dinitrogen tetroxide,
and on the correlations of the decomposition rate
constants with, e.g., spectroscopical constants, a
classification of the reactivity of PAH in electro-
philic aromatic reactions has been proposed (67).
This classification agrees reasonably well with the
experimental results of others reports on the rela-
tive reactivities of adsorbed PAH (24,78-80). The
PAHs have been divided into five groups. The most
reactive ones are those in the group with the lowest
number, and the most stable are in the group with
the highest number. The classification is as follows:
i, benzo(a)tetracene, pentacene, tetracene; II, an-
thanthrene, anthracene, benzo{a)pyrene, perylene;
ITI, benz{a)anthracene, benzo(ghi)perylene, cyclo-
penteno(c,d)pyrene, pyrene; I'V, benzo(c)phenanth-
rene, benzo(e)pyrene, chrysene, coronene, dibenz-

anthracenes; V, benzofluoranthenes, fluoranthene,
indeno(1,2,3-¢,d)pyrene, naphthalene, phenanthrene,
triphenylene.

An investigation of the decomposition rates of
substituted anthracenes shows that electron-donating
substituents enhance the reactivity of a certain
PAH, while it is reduced by electron-atiracting
substituents (67). Thus, hydroxy (if the compound
is present as a phenol and not as the tautomer) (65,
81), alkoxy and alkyl substituents should generally
be expected to promote the reactivity, and am-
monium, carboxy, formyl, sulfo, keto and nitro
groups should be expected to lower it (§2).

Furan, pyrrole, and thiophene are far more reac-
tive than benzene in electrophilic aromatic reac-
tions (82). But in heteroaromatic compounds having
two or more ring systems, the effect of the hetero
atom is diluted (82,84), and an evaluation of the
reactivity of oxa-, thia-, and azaarenes of the carbazol
type would not be possible without therough inves-
tigations. Pyridine, however, is less reactive than
benzene (82).

Most of the azaarenes of the acridin-type are
weak bases (pKp = 8-11) (85). Electrophilic nitration
reactions of aromatics are catalyzed by acids, and
on most acidie particles it seems that pH in the
water film on the particle may be below 3 (§6,87).
The protonation of the basic azaarenes is expected
to reduce their reactivity, and it appears, there-
fore, to be a plausible hypothesis that under cir-
cumstances feasible for electrophilic aromatic nitration
reactions the basic azaarenes will be less reactive
than the corresponding PAH.

Stability of Nitro-PAHs

In general, knowledge of the chemistry of nitro
derivatives of POM is rather Yimited. The most
important transformation reaction of nitro-PAH is
assumed to be photodegradation (17,88), Regarding
PAH, photolytic reactions have been observed for
PAH adsorbed on soot {18-20,89,90) and on air-
borne particulate matter (21,22). The latter is less
conclusive, however, considering the adsorption tech-
niques used. In contradiction to the results obtained
with soot and airborne particles, PAH adsorbed on
coal fly ash are highly resistant to photodegradation
(91,92). The 1- and 3-nitrobenzo(a)pyrenes appear
to be quite photostable (88), while photodegradation
of 2,3-dimethyi-1-nitronaphthalene, 9-nitroanthracene
and 6-nitrobenzo(a)pyrene have been observed in
several cases (17,52,63,93). Some nitro-PAHs that
are in the vapor phase or adsorbed on carbonaceous
particles may, therefore, photodegrade. The photo-
degradation involves rearrangement of the nitro-PAH
to the corresponding aryl nitrite and subsequent
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elimination of nitregen monoxide to form the phenoxy
radical (58). As discussed earlier, the main reac-
tions of phenoxy radicals are their transformation
to nitrohydroxy derivatives and quinones. Hydro-
gen abstraction of the phenoxyl radicals from alco-
hols, aldehydes and ketones may lead to the hydroxy
derivatives (94). The aryl nitrites may also hydro-
lyze to the hydroxy derivatives and nitrous acid.

Looking at electrophilic aromatic reactions (67)
and those with hydroxyl radicals (95), the trans-
formation rate of nitro-PAH appears to be slower
than that of the corresponding PAH. Reactions of
nitro derivatives with hydroxyl radicals will proba-
bly not involve denitrations reactions (96).

Formation and Occurrence of
PAH-SO, Reaction Products

Laboratory Experiments

As a result of the sulfur content in various fuels
such as oil and coal, sulfur oxides are formed by
combustion. The original species formed are largely
S0z and to a smaller extent SO;. SO, adsorbed to
particles are known to be oxidized to sulfate (97).
The pH of smail aerosol droplets has been shown to
be less than 3 (98), indicating high concentrations of
sulfurie acid.

Gaseous benzene reacts readily with gaseous SO;
(99). Pyrene reacts at room temperature with con-
centrated HoSO, to produce a mixture of disulfonic
acids (100). Sulfinic acids may be formed through
the reaction of PAH with SO, molecules activated
by ultraviolet light (SO;*). Apart from these sub-
stances, sulfones and sulfoxides may be formed via
reactiocn with SO; and SO, or SO,*, respectively, Of
these derivatives, sulfinic acids and sulfoxides may
further be oxidized to diaryldisulfoxides, disulfones
and possibly even sulfonic acids by the catalytic
action of the carrier.

Tebbens et al. (28) studied the degradation of
benzo{a)pyrene (BaP) adsorbed to soot particles by
various concentrations of 80,. 50, concentrations
of 50-80 ppm yielded approximately 50% deprada-
tion, whereas 8-10 ppm showed no degradation in
the dark. In presence of light approximately 50%
degradation was observed for both coneentrations.
No reaction products were identified.

Nagai et al. (I01) observed the formation of
anthracene-%-sulfonic acid by photocatalyzed reac-
tion of anthracene and sulfur dioxide in various
solvents at -25°C. A very high concentration (5-40%)
of S0, was used.

Jédger and Rakovic (162,105) studied the reaction
of pyrene and BaP, adsorbed on fly ash and alumi-

na, with 10% sulfur dioxide in air, and isolated
many sulfur-containing compounds, including py-
rene-1-sulfonic acid, pyrenedisulfonic acid and BaP-
sulfonic acid. However, under typical ambient con-
ditions, no significant reaction of BaP exposed to 1
ppm in air was observed on a glass fiber filter.

Hughes et al. (75) exposed coal fly ash, enriched
with PAH through vapor-phase adsorption (104), to
gaseous concentrations of 100 ppm of SO, and SO;.
They observed no reaction with SQ,, while many
reaction products were observed with SO, Howev-
er, none of these were identified. The same reaction
pattern also cecurred on other substrates, such as
alumina, silica and activated charcoal. Butler and
Crossley (79) exposed PAH, naturally present on
soot particles, to air containing 5 ppm SO, for 3
months without any significant loss.

The conclusion of these experiments is that PAH
may react with SO, under special conditions and
that PAHs do react with SOy in all experiments
performed. Of the many theoretical reaction prod-
ucts, only some PAH-sulfonie acids have been
identified in laboratory experiments. These prod-
ucts have never been identified in real sampies as
ambient air particles or fly ash. These acidic com-
pounds are water soluble, and will probably not be
extracted from particles with the usual solvents as
cyclohexane and dichloromethane. They may there-
fore have been overlooked in previcus studies of
atmospheric POM.

Health Effects of PAH-Sulfonic Acids

Little work has been done to assess the possible
health effects of PAH-sulfonic acids. In general the
sulfo group appears to be strongly detoxifying.
Even a highly toxic and carcinogenic compound
such as 2-naphthylamine becomes nontoxic when
sulfonic acid groups are introduced (205). Windaus
and Rennbak reported in 1937 that BaP-monosulfonic
acid was noncareinogenic to mice (106). In a recent
study, sulfone derivatives of pyrene showed little
or no enhancement of the biological activity relative
to the parent compound (107) in the Ames Salmo-
nella test (108).

Transformation Reactions of PAH
with Air, Ozone or Free Radicals

Air (Molecular Oxygen)

Gas-surface reactions in the dark between molec-
ular oxygen and some PAHs (91,109) appear to be
very slow, with a time scale of days or weeks.
Hence, these reactions may not represent a significant
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degradation pathway for most PAH. Long-range
transport of PAH reported both in Europe and the
U.S. also indicates little degradation of some of the
adsorbed PAH in air (14,110-112), particularly in
absence of light or with low intensity light.

Ozone

Studies by Lane and Katz (173) have shown high
reactivity of BaP on petri plates when it is exposed
to sub-ppm levels of ozone in air. They reported a
half-life of 0.6 hr for BaP at an ozone level of 190
ppb. In their experiments, irradiation did not seem
to significantly affect the reactivity of the BaP-
ozone system. They also observed that certain PAH
containing five-membered rings such as benzo(k)-
fluoranthene were far more resistant to oxidation
than BaP. It is likely therefore that the reactivity
varies strohgly for different structures.

Experiments by Pitts and co-workers (12} have
confirmed and extended the work of Lane and Katz.
BaP-coated glass fiber filters were exposed to con-
centrations of 0.1-0.2 ppm ozone in air for periods
varying from 5 min up to 4 hr. For 0.2 ppm Oy
conversion yields of 50% after 1 hr and 80% after 4
hr were observed (22). These data are in good a-
greement with the data of Lane and Katz (713).

Peters and Seifert (22) found in similar measure-
ments that the BaP lifetime to be inversely corre-
lated with the ambient ozone concentration. For
irradiated BaP impregnated filters they observed
decay curves similar to those obtained by Lane and
Katz (113) and by Pitts et al. (72). Interestingly,
however, they found a much more pronounced
difference between the results of experiments carried
out in the dark and those involving irradiation with
a much slower decay observed for the dark samples.
Also, they observed little difference between dust-
free and dust-coated filters, suggesting that the
presence of particulate matter is of minor impor-
tance for the stability of BaP on the filter (22).

Pitts and co-workers (12,24,38) isolated and iden-
tified the major reaction products from their ozone-
BaP exposure experimentis as ring-opened com-
pounds, including dialdehydes, dicarboxylic acids
and ketocarboxylic acids. The major skeleton remain-
ing after the oxidation of BaP appears to be the
benzanthrone structure, a compound that indeed
has been detected in ambient particulates (714).

The reaction mixture from these experiments
showed direct mutagenic activity in the Ames test.
The major stable contributor to this direct activity
has been identified (12) as BaP-4,5-oxide, a DNA-
binding metabolite in biological systems, a powerful
direct mutagen, and a weak carcinogen on mouse
skin.

Free Radicals

Reactions of hydroxyl radicals with PAH have
only been investigated in a few cases (26,115). By
analogy to their reactivity in “simple” gas-phase
systems (e.g., toluene) (49,116), addition of OH to
the aromatic rings predominate. The radicals formed
by initial attack of OH on PAH will presumably
react further with O.. Thus, as in the gas phase
conversion of toluene to cresols, one might expect
the formation of hydroxy derivatives of PAH and
ring-opening oxidation products (47,49). The for-
mer could react further, for example, to quinones
(47,49,50,52,53,117). The aceurrence of hydroxyarenes
in the atmosphere is poorly investigated, but a few
hydroxy derivatives of benzene have been identified
(118).

The average concentration of hydroxyl radieal in
the atmosphere at 60° N latitude is estimated to be
about 1 x 10° molecule/em?® in summer (119). Taking
into consideration the reaction with hydroxyl radi-
cals alone, the half-life of benzene (117,120) will be
about 6 days under these circumstances. The reac-
tivities of alternant PAH such as pyrene towards
radicals should be expected to be higher than that
of benzene (121-124), but not by more than two
orders of magnitude towards hydroxyl radicals (26).
It is impossible to make any reliable predictions of
the reactivities of nonalternant PAH, e.g., fluor-
anthene, as no investigation of radical reactions of
these compounds seems to have been made so far.
The reactions between hydroxyl radicals and hy-
droxyarenes seem to be faster than those between
hydroxyl radicals and the parent arenes. Thus, at a
hydroxyl radical concentration of 1 x 10° mole-
cules/em® and at 26°C the half-life of o-cresol (50} is-
6 hr.

It has been observed that soot particles contain
free organic radicals (125,126). Radical reactions of
PAH and other POM adsorbed on particles may,
therefore, be possible. Furthermore, gas-phase rad-
icals in the atmosphere, e.g., hydroxyl radicals,
may react with particle-associated POM. However,
in experiments with pyrene adsorbed on soot,
aluminum oxide, fly ash, and silica gel and exposed
to nitrogen dioxide, the reactions of pyrene seemed
to be independent of the irradiation parameters
(74). This suggests, that reactions between gas-
phase oxygen atoms [O(*P)] or hydroxyl radicals
{127} and the adsorbed pyrene were not important
in these experiments.

Singlet Molecular Oxygen

The chemical reactions of singlet oxygen O('Ay)
with PAH have not been studied in detail. Howev-
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er, reactions with gaseous olefins and cyelic ethers
are reasonable well understood, yielding hydro-
peroxides and endoperoxides, respectively.

A photophysical mechanism for generating singlet
oxygen from organics (e.g., in smog) has been
postulated to involve a phatosensitized reaction in
which the organic pollutant absorbs light in the
actinic ultraviolet region, crosses over to the triplet
state, and then on quenching with oxygen, forms
0,(*A,) (128). Most PAHs satisfy this condition and
can therefore be both sensitizer and reactant in the
same reaction sequence.

PAH that have an anthracene skeleton in their
structure, such as benz(a)anthracene should yield
an endoperoxide intermediate similar to the cyclo-
addition of singlet oxygen to cyclohexadiene. Qui-
nones are the uitimate product. Other PAH such as
benzo(a)pyrene, however, cannot form this endo-
peroxide and probably yield a hydroperoxide (after
rearrangement of the initially formed dioxetane)
that can react further to give guinones.

McCoy and Rosenkranz (129) have reported the
transformation of chrysene and 3-methylcholanthrene
to direct mutagens by photodynamically generated
singlet oxygen. They emphasized the importance of
this potential mechanism of conversion of airborne
PAH to mutagens and to potential “ultimate” (i.e.,
direct-acting) carcinogens.

Photochemically Induced
Reactions of PAH

Several reaction pathways are possible when PAH
are irradiated with ultraviolet light. These depend,
of course, upon the size and structure of the PAH,
and whether or not oxygen is present.

The relative efficiencies of photochemical changes
of 156 PAHs during thin-layer chromatography has
heen studied (130,131). The PAHs were deposited
on four different adsorbents (silica gel G, aluminum
oxide G, cellulose powder and acetylated cellulose,
21%) and exposed to ultraviolet and room light.
Phenanthrene, chrysene, triphenylene and picene
did not react; however, on silica gel G and aluminum
oxide G the other 11 PAHs including BaP, under-
went pronounced changes. On less polar substrates,
such as powdered cellulose or acetylated cellulose,
the behavior of the 11 PAHs was similar, but the
changes in appearance of fluorescence were much
less extensive and occurred much more slowly. The
reactions of these PAHs may be interpreted in
terms of the formation of a PAH radical cation,
leading to a phenoxyl radical by reaction with oxy-
gen, as shown by Inomata and Nagata (94).

Geacintov (132) coated solid polystyrene fluffs
with 20 PAHs and irradiated them in the presence

of oxygen and nitric oxide. Interestingly, essen-
tially no photoproducts were observed, but efficient
energy transfer was cbserved from PAH to oxygen
to form singlet molecular oxygen Oz(lAg), a well-
known process in solution and in the gas phase.

The earliest 'study of PAH photochemical degra-
dation was conducted by Falk and co-workers (7).
A striking result is the higher reactivity, in light
and air, for PAH in the pure form versus the same
PAH adsorbed on soot. This was explained by the
hypothesis that adsorption on a highly porous par-
ticle may provide some protection from photo-
oxidation. The same pattern was not observed for
exposure to smog; in this case the reactivity results
were mixed for the pure versus adsorbed compound.

Tebbens et al. {18) studied the chemical modifi-
cations of BaP and perylene in smoke. They found
that irradiation in a flow chamber caused disap-
pearance of transformation of 35-65% of the original
PAH content. Subsequently, Thomas et al. (19)
employed a similar flow system to measure the
reactions of BaP on soot at the entrance and exit of
a chamber, and found a 58% decrease upon irradia-
tion, However, some of these results are in vari-
ance with those of Falk et al. (17).

Natusch et al. (91) employed a model system in
which individual PAHs were adsorbed onto the
surface of fly ash collected from electrostatic precip-
itators of coal-fired power plants. None of the irra-
diated PAH showed a significant photodegradation.
Such degradation occurred very rapidly and did not
proceed further over time periods of up to 100 hr.
On the other hand, a number of other compounds
studied were observed to undergo quite extensive
oxidation in the absence of light, and different fly
ash substrates yielded different oxidation rates.
Whether or not these results can be extrapolated to
combustion-related POM is not clear since they
observed that PAH adsorbed onto coal fly ash sur-
faces exhibit quite different chemical behavior (par-
ticularly photodecomposition) from PAH adsorbed
onto other solid substrates such as alumina (91).

Fox and Olive (21) found that anthracene dis-
persed inte atmospheric particulate matter is photo-
oxidized to an array to products reminiscent of
oxidation by singlet oxygen in solution phase. They
also found that photooxidation is 2 more significant
degradative pathway under ambient conditions than
ozonation.

Effect of the Carrier

on the Reactivity of PAH

The chemical reactivity of PAH adsorbed onto
particles will be affected by two factors, one of
which is physical, the other chemical in nature.
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When a reactive compound is finely divided over a
surface, its accessability for the gas molecules will
depend on particle size, shape and specific surface
area. While this physical parameter is probably
more or less constant for glass fiber filters, it can
vary immensely for reactions on particles. Dissolu-
tion of reactive gases in the liguid film on particles
may be an additional factor affecting the sequence
of reactions of adsorbed species.

The chemical structures of the adsorption sites of
particle-associated PAH have so far been only partly
unravelled (19,61). Some observations suggest that
PAH are preferentially adsorbed on particles with
a relative high content of carbon (41,133). Fur-
thermore, the high extraction temperatures or the
long extraction times needed to attain quantitative
recoveries of PAH deposited on particles from die-
sel exhaust gases (144) and from some carbon black
(88,185,136) confirm the high affinity (187) of PAH
to graphitized soot (738,139). Increased concentra-
tions of particles mainly consisting of lead halogenides
and oxide appear to affect the distribution of PAH
between being adsorbed on particles and being in
vapor phase in diluted exhaust gas (733,140). This
suggests, however, that particle-bonded PAH 1is
not associated exclusively with carbonaceous parti-
cles. This point may perhaps be more important for
the lower PAH (four rings) considering the differ-
ence in the particle-size distribution for the lower
and higher PAH in diluted exhaust gas (133) and
the substantial amount of the lower PAH in the
atmosphere occurring in vapor phases (15,43-486).

Small changes in the solvent composition in selu-
tion experiments have a strong effect on the decom-
position rate of anthracene in nitration reactions. It
appears that the rate increases with increasing
polarity and/et decreasing basicity of the solvent
(47). Similar effects may be the reason that the
formation rates of 1-nitropyrene and 6-nitrobenzo-
(a)pyrene were much slower, if pyrene and benzo-
(a)pyrene were adsorbed on carbonaceous deposits
from the exhaust system of a four-stroke engine
than if the carrier used was silica gel, neutral
aluminum oxide, or fly ash from a power plant (74).
Correspondingly, high transformation rates of ben-
zo(a)pyrene and perylene adsorbed on glass fiber
filters and exposed to nitrogen dioxide and nitric
acid have been observed (11,24), while those of 10
PAHs adsorbed on soot {(formed by incomplete com-
bustion of ethylene) and exposed to nitrogen diox-
ide were relatively slow (79).

It should be stressed that further investigations
are reguired, but the observations made so far
indicate that most of the particle-bonded PAH is
assoclated with carbonaceous particles. Transfor-

mation reactions of PAH on fresh carbonaceous
particles appear to be relatively slow, but atmo-
spheric oxidation processes change the chemical
composition of these particles during their trans-
port and may produce a surface containing higher
amounts of hydrophilic sites and free acids (19,141,
142). Some evidence has been attained suggesting
that the rates of the transformation processes of
PAH with nitrogen dioxide on aged carbonaceous
particles are higher than on freshly emitted parti-
cles. Dosage of nitrogen dioxide (mean 1 ppm)
during 24 hr high-volume sampling on glass fiber
filters of airborne particulate matter in the winter
caused degradation of benzo(a)pyrene and other
PAH, In the two worst cases, the degradation of
benzo(a)pyrene was 70% and 90%. These cases
coincided with long-range transport episodes of sul-
fur diexide and sulfate (80). It appears reasonable
to assume, therefore, that a substantial part of the
PAH also originates from distant sources (24), and
that these PAH have been associated with rela-
tively aged aerosols.

It is difficult to make an exact evaluation of the
rates of the transformation processes of PAH on
fresh carbonaceous particles, as the experiments
done so far appear to have been performed at a low
humidity (74,79), the humidity may be an important
parameter affecting the adsorption of nitrogen diox-
ide on the particles (62). In this connection, it may
be important also that soot particles are able to
adsorb relatively large amounts of water (61). Another
point making it difficult to evaluate the rates of the
transformation processes, is that the combined effects
of different pollutants, nitrogen dioxide and nitric
acid (24,77), nitrogen dioxide and sulfur dioxide
(77), on the rates seem to be synergistic, that is,
that the total effect is larger than the sum of the
separate effects of these pollutants.

Reactions which involve irradiation are even more
complex since PAH deposited inside porous parti-
cles or inner layers of PAH can easily be shielded
from the incident light. At a given concentration,
thege parameters will determine the diatribution of
PAH into a monolayer or a multilayer. In heteroge-
neous reactions, the outer layer(s) is protected
from further attack by the initially formed prod-
ucts,

A second factor affecting this reactivity is chemi-
cal in nature: the adsorption of organics onto the
aerosol matrix can modify their reactivity through
catalytic effects, induced by constituents of that
matrix. Thus, the suppression of photochemistry of
PAH, adsorbed onto coal fly ash might well be
related to a stabilization of their ground electronic
state.
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Conclusions
and Recommendations

Several experiments in the literature provide
evidence for the high reactivity of various PAH in
dark reactions with ozone and nitrogen dioxide as
well as for photochemical degradation under simu-
lated atmospheric conditions. Direct mutagens are
formed in these laboratory experiments, which are
likely to contribute also to the direct mutagenicity
of ambient particulate matter.

Nitro-PAH have been identified in collected sam-
ples from diesel exhaust gases, but at present it is
unknown whether they are truly components of
diesel exhaust or instead are formed as artifacts
during the sampling.

Biological tests have confirmed apparently unam-
biguously that mutagenic complex nitroarenes are
present in substantial amounts in polluted air in
winter or are formed during the collection of the
samples. The lack of several observations on the
presence of mononitro-PAH suggests that these
ecompounds hardly make up a dominant contribution
to the presence of mutagenic eomplex nitroarenes,
unless most of the mononitro-PAH present should
consist of supermutagenic species. Biological tests
specific for nitrearenes combined with fractionation
of the samples should be performed in order to gain
more knowledge about the structure of the complex
mutagenic nitroarenes. This shouid be combined
with studies of artifact formation during the frae-
tionation. Some nitro-PAH may photolyze in day-
light. Quinones, hydroxy derivatives, nitrohydroxy
derivatives and their tautomers are the most plau-
sible products.

Very little ig known about the presence of PAH-
sulfonic acids and other reaction products from
PAH and S0, in environmental samples, and their
possible health effects. If reactions accur, they are
most likely under plume conditions. The PAH-
sulfonic acids may have been overlooked in earlier
studies due to the analytic procedures.

The limited data on health effects by these com-
pounds indicate that the sulfonic acid group detox-
ify the molecule and eould make them nonmutagenic
in the Ames test. However, only a few substances
have been tested, so no general conclusion can be
drawn.

On days with photochemical air pollution the
half-life of most of those PAH being in gas phase
will be short, probably in the range of minutes to
some hours. The most plausible transformation prod-
ucts appear to be hydroxy derivatives and other
oxidation products, e.g., quinenes.

Most of the particle-bonded PAH seems to be
associated with carbonaceous particles. Some exper-

iments suggest that the transformation reactions of
PAH adsorbed on fresh soot particles and exposed
to nitrogen dioxide, sulfur dioxide and ozone are
relatively slow, but taking into consideration the
experimental conditions, the possibility of syner-
gistic effects of different pollutants on the trans-
formation rates, and the possibility that chemical
processes may change the nature of the particles
during the transport in the atmosphere, it is difficult
to make a reliable prediction of the rates in the
atmosphere of, e.g., reactions between particle-
associated benzo(a)pyrene and gaseous copollutants.

Despite the many experimental problems and the
multitude of parameters involved, it is necessary to
perform model studies using relevant particles and
at atmospheric conditions as close as possible to
ambient in order to gain information about the
transformation rates.

Future work using simple model systems should
foeus on the unravelling of the effects of physical
and chemical factors on the transformation rates
and the produet distribution. This work should not
be limited to PAH, but also include other types of
POM, e.g., oxa-, thia-, and azaarenes and deriva-
tives of PAH, Mutagenicity studies of the reaction
products should also be performed.
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